每个程序员都应该收藏的算法复杂度速查表

每个程序员都应该收藏的算法复杂度速查表

这篇文章覆盖了计算机科学里面常见算法的时间和空间的大 OBig-O 复杂度。

算法复杂度这件事

这篇文章覆盖了计算机科学里面常见算法的时间和空间的 大 O Big-O 复杂度。我之前在参加面试前,经常需要花费很多时间从互联网上查找各种搜索和排序算法的优劣,以便我在面试时不会被问住。最近这几年,我面试了几家硅谷的初创企业和一些更大一些的公司,如 Yahoo、eBay、LinkedIn 和 Google,每次我都需要准备这个,我就在问自己,“为什么没有人创建一个漂亮的大 O 速查表呢?”所以,为了节省大家的时间,我就创建了这个,希望你喜欢!

--- Eric

图例

绝佳 不错 一般 不佳 糟糕

数据结构操作

数据结构 时间复杂度 空间复杂度
平均 最差
访问 搜索
Array O(1) O(n)
Stack O(n) O(n)
Singly-Linked List O(n) O(n)
Doubly-Linked List O(n) O(n)
Skip List O(log(n)) O(log(n))
Hash Table - O(1)
Binary Search Tree O(log(n)) O(log(n))
Cartesian Tree - O(log(n))
B-Tree O(log(n)) O(log(n))
Red-Black Tree O(log(n)) O(log(n))
Splay Tree - O(log(n))
AVL Tree O(log(n)) O(log(n))

数组排序算法

算法 时间复杂度 空间复杂度
最佳 平均
Quicksort O(n log(n)) O(n log(n))
Mergesort O(n log(n)) O(n log(n))
Timsort O(n) O(n log(n))
Heapsort O(n log(n)) O(n log(n))
Bubble Sort O(n) O(n^2)
Insertion Sort O(n) O(n^2)
Selection Sort O(n^2) O(n^2)
Shell Sort O(n) O((nlog(n))^2)
Bucket Sort O(n+k) O(n+k)
Radix Sort O(nk) O(nk)

图操作

节点 / 边界管理 存储 增加顶点 增加边界 移除顶点 移除边界 查询
Adjacency list O( V + E ) O(1)
Incidence list O( V + E ) O(1)
Adjacency matrix O( V ^2) O( V ^2)
Incidence matrix O( V E ) O(

堆操作

| 类型 | 时间复杂度 | | --- |

你应该知道的基础 Git 命令 点评五款用于 Linux 编程的内存调试器